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Interface equations are derived for both binary diffusive and binary fluid 
systems subjected to nonequilibrium conditions, starting from coarse-grained 
(mesoscopic) models. The equations are used to describe thermocapillary 
motion of a droplet in both purely diffusive and fluid cases, and the results are 
compared with numerical simulations. A mesoscopic chemical potential shift 
owing to the temperature gradient, and associated mesoscopic corrections 
involved in droplet motion, are elucidated. 
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1. I N T R O D U C T I O N  

The study of interracial dynamics in multiphase systems has been a topic 
of considerable interest in recent years. A wide range of phenomena such 
as solidification, viscous fingering, droplet migration, spinodal decomposi- 
tion and fracture all involve, in one way or another, a description of inter- 
facial motion. Often analysis of these and related phenomena is performed 
at the macroscopic level, using, for example, hydrodynamic equations sup- 
plemented by appropria te  phenomenological  bounda ry  conditions. Macro-  
scopic interface equations are exceptionally useful bo th  conceptually and 
computa t ional ly  in that  bulk degrees of  freedom are eliminated; computa-  
tionally the cost  is the required careful tracking of  the interface posit ion 

1 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 
15260. 

2 Department of Physics, Ochanomizu University, Tokyo, Japan 112. 

1013 

0022-4715/97/0900-1013512.50/0 �9 1997 Plenum Publishing Corporation 
822/88/5-6-2 



1014 Bhagavatula e t  al. 

and shape. Some examples of their application are included in ref. 1 and 
citations therein. 

The macroscopic approach, while valuable in its own domain, has 
natural limitations. The most obvious lie in situations in which the scale of 
structures is not sufficiently larger than the physical interfacial thickness, 
which can grow to several molecular length scales not too far from criti- 
cality, for example. Phenomena such as coalescence ultimately run macro- 
scopic approaches to their limits, although ad hoc but reasonable methods 
are often available for resolving singularities having to do with infinitely 
sharp interfaces. In addition, one may wonder whether macroscopic 
boundary conditions may require correction in situations which strain the 
assumptions. 

Derivations of macroscopic interface equations from more microscopic 
starting points can be extremely useful in illuminating just what assump- 
tions are necessary and the potential limitations. Indeed considerable 
progress has been made in this regard beginning from a coarse-grained or 
mesoscopic levelJ 2~ However, the interfacial response to nonequilibrium 
perturbations or inhomogeneities such as an imposed small thermal 
gradient, can pose interesting challenges. In this paper, we develop interface 
equations starting from mesoscopic (coarse-grained) models for both 
purely diffusive binary systems and binary systems with hydrodynamic 
interactions, subjected to small nonequilibrium perturbations. Using this 
approach, we investigate as an example, thermocapillary driven motion of 
a droplet in both binary diffusive and binary fluid systems in an imposed 
temperature gradient. Note that motion of a droplet in the hydrodynamic 
case has been well explored by the use of macroscopic techniques,~3 51 whil e 
diffusion driven thermocapillary motion has not been received much atten- 
tion in the literature/6) Thus, to the best of our knowledge, our modeling 
approach provides a first detailed comparison for the droplet motion in 
these two distinctly different cases. Furthermore, in addition to reproducing 
the results consistent with macroscopic hydrodynamics, the coarse-grained 
modeling approach also provides a means to investigate mesoscopic correc- 
tions associated with finite interfacial thickness. This feature may prove 
useful in understanding interfacial dynamics at mesoscopic length scales. 

The remainder of this paper is laid out as follows. In the next Section 
we introduce the notation and briefly review the coarse-grained models we 
will consider along with the relevant equilibrium features. Section 3 deals 
with the introduction of the types of nonequilibrium considered here and 
with the effect on a single flat interface. Section 4 contains the derivation of 
the macroscopic interface equations and mesoscopic corrections in both the 
fluid and diffusive cases. 
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2. MODELS 

We begin with the d-dimensional coarse-grained (mesoscopic) binary 
fluid and binary diffusive models which are commonly referred to as the 
Model-H and Model-B in the literature. ~7) These traditional models have 
been extensively used to investigate critical fluctuations in binary systems. 
However, the usefulness of such models for regions well below the critical 
point is still being established, by, for example, demonstrating that in 
particular limits well established macroscopic results are reproducedJ 8) 
This remains a focus in this paper. One advantage of this type of modeling 
is that the physics of capillarity is naturally built in as opposed to being 
introduced through boundary conditions in macroscopic techniques. 

A. Hydrodynamic Model 

The coarse-grained model is defined by a conserved order parameter 
r (e.g., concentration of one of the phases) whose evolution is given by 

O~b(7, t) + ~.  (~b~Y) = V2/~(7, t) (1) 
Ot 

where/~ = (6F/~r is the appropriate chemical potential given by the func- 
tional derivative of the Helmholtz free energy F. The fluid velocity g(F, t) 
satisfies a modified Navier-Stokes equation, (7' 8) 

0b" 
~ = }/V2ff - VlP +/2 V{~ (2) 

where P is the pressure, r/ and p are viscosity and density respectively, 
which are assumed to be fixed and equal for both phases for simplicity. 
Equations (1) and (2) along with the incompressibility condition, V. if= 0, 
completely specify the hydrodynamic model with the following three 
boundary conditions: (B1) a/a/an =0; (B2) 0r and, for example, 
(B3) ~'= 0 on the boundary. Here O/an corresponds to the normal derivative 
at the system boundary. The condition B1 preserves the global conservation 
of order parameter r B2 is the natural boundary condition which demands 
smoothness of r at the edges, and B3 enforces "no-slip," with other 
possibilities easily included. Note that our interest here is to address small 
Reynolds numbers (Re) and, hence, the nonlinear convective terms have 
been dropped in the velocity equation (2). 
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B. Diffusive Model 

Model-B is in turn specified by evolution equation 

a~b(f, t) = V:/z (3) 
at 

with boundary conditions B1 and B2 mentioned above. One may view this 
as the diffusion dominated limit of Eq. (1) where the fluid velocity is 
neglected. This is a version of Cahn-Hilliard model for binary diffusive 
systems used to study phase separation. ~9) 

The mean-field level equilibrium properties of the two coexisting 
phases are characterized by the local Helmholtz free energy density which, 
for systems of interest, we take as a polynomial function 

f =  ~ ct__~r (4) 
n 

n > - 0  

with the coefficients 0~n depending smoothly on physical fields such as the 
temperature chosen such that the system is within the two phase regime. 
Although it is not essential we will generally assume a scaling equation of 
state (see below). The equilibrium properties depend on the local tem- 
perature T and Other field variables that determine the 0~ n. For example, 
taking c t 2 = - z  where r > 0  depending linearly on the temperature 
[ ~ =  (T,.-T)/T,. with T,, being the mean field critical temperature], and 
(x 4 = 1 with all other ~. = 0, we have the usual double-well Landau free 
energy, which will serve as our "standard model." The (Helmholtz) free 
energy functional for this case is given by 

where we assume the mesoscopic length f is typically of the order of several 
molecular spacings some distance below the critical point. This length 
characterizes spatial variations of the order parameter and consequently 
sets the interfacial thickness. The chemical potential iz is given by 

lt(f,t)=-(2V2~b+-~= V2~b - r~b + ~b 3 (6) 

Note that our standard model corresponds to a symmetric situation with 
equilibrium phase values Ceq = ---+ V/~; the coexistence curve is symmetric 
and, for example, response functions and other bulk properties are identical 



Thermocapillary Motion in Binary Systems 1017 

in the coexisting phases. When the system is in equilibrium, a flat interface 
with normal along x has the well-known profile (exact within this mean- 
field level in an infinite system), 

[ x - -  x 0 ]  
r = Ceq tanh L v/~ ~ J (7) 

where x0 is the location of the interface and ~ = f /x/~ is the thermal 
correlation length (see, e.g., refs. 9, 10 for details of this analysis). Note that 
the profile takes values +r at x = _+ oo respectively. In a finite system 
this serves as a good approximation for the profile so long as the system 
size is much larger than the interfacial thickness ~. We will assume 
more generally scaling behavior for the order parameter profile, r  
Ceqh(x-Xo/~), with h(y)~ _1 as y ~  _+ oo. Such behavior will follow 
from a scaling equation of state determined byf( r  hi' 10~ or quite generally 
with the identification of ~ with f. The profile given in Eq. (7) satisfies 
Eq. (6) with constant p. Note that/~ = 0 for a symmetric system at two- 
phase coexistence and for the above interfacial profile. Using these features, 
and a scaling form for the profile, it is straightforward to show ~12' 10) that 
the surface tension a is given by a ( r ) =  f2 I  (O(~/Ox)2dx--_ el EZ~2q/~, where 
el is a nonuniversal constant depending on details of the profile h(x) and 
taking the value 2 x/~/3 in the standard r Note that the surface ten- 
sion depends on the temperature (and ultimately on the local temperature) 
through the Ceq and ~. Also, note that the analysis can be extended by 
choosing the coefficients a,  such that the macroscopic limit (i.e., formally, 
E ~ 0) of a exists. Physically the macroscopic limit obtains when the scale 
of any structures greatly exceeds the interfacial thickness, which is of order 

~ (. Specifically, for the above r model, the choice ~2 = ~ 'o /~2  

and a4 = Uo/( 2 (with u0 = 1 for simplicity) ensures the finiteness of tr as well 
as the bulk order parameter values in the macroscopic or sharp interface 
limit, f ~ 0. For specificity we will use the symmetric r model described 
above. The first equality in Eq. (6) is general; we will use it and indicate 
below which features are model dependent. 

3. INTRODUCING DRIVING TERMS 

When the 0c n are spatially uniform and chosen such that the system is 
on the bulk phase boundary, the system can evolve to a simple equilibrium 
state with a single homogeneous phase or a two-phase equilibrium with flat 
interface and volume fractions chosen according to the overall order 
parameter. Considerable progress has been made in the study of kinetics of 
the approach to equilibrium and of phase separation in such cases; see, e.g., 
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refs. 9, 13. Macroscopic interface equations have been derived from 
the coarse grained level in order to explore the physics of phase ordering 
kinetics j2, 14) However, when one or more of the 0c, has a small spatial 
variation, the situation is somewhat different. 

In such a situation, the system may be able to reach an inhomo- 
geneous equilibrium state depending on the nature of the variation and the 
boundary conditions. For example, in a closed system, a fluid in a gravita- 
tional field reaches an equilibrium state with a spatially varying density. 
However, in a sufficiently large system, such an inhomogeneity can yield 
interesting dynamical evolution long before the walls come into play. ~lSJ An 
example which produces quasi-stationary states is that of capillarity driven 
droplet motion in a temperature gradient) 8~ Here, in the simplest case, a 
droplet drifts toward the "hot" side with approximately steady state motion 
until reaching the vicinity of the system boundary. In this approximate 
steady state, the system is spatially nonuniform, but close to local equi- 
librium everywhere. In such cases, the interfacial dynamics are influenced 
by the spatial variation in the surface tension resulting from the spatial 
dependence of the %. Our interest here is to address this spatially 
inhomogeneous situation and present an approach for deriving reduced 
equations that describe the interfacial dynamics. 

For specificity we consider the following spatial dependence in the 
standard example mentioned above: r(x) = -~2(x) = t o -  fix > 0, ~ = 1, 
and all other 0c,, = 0  in the free energy given by Eq. (4). This situation 
corresponds to imposing a temperature gradient on the system along x 
direction with the two ends kept at temperatures corresponding to ro and 
r0- f lLx  where Lx is the size of the system along x. We restrict ourselves 
to temperatures slowly varying over the correlation length so that fl( ~ 1. 
This is easily satisfied experimentally, and our analysis remains valid even 
for temperature gradients large by experimental standards tS) Furthermore 
we consider only the situation in which the entire system is in the two- 
phase region. Thermocapillary phenomena associated with such type of 
thermal gradients have been numerically investigated recently in refs. 8, 16, 
17, 6. Note that the spatial variation and hence, the temperature field, is 
fixed, corresponding to large thermal conductivity of the medium. 
Generalizations to treating the temperature field as an active dynamical 
variable are possible and will be treated elsewhere. 

Before considering the evolution of a complicated interface, it is useful 
to examine the properties of a stationary flat interface with its normal 
along x in a thermal gradient. In such steady state, which exists for the case 
of conserved order parameter, c~ck/at = 0 and v = 0. Hence following from 
Eq. (1), p should be a constant since Op/On = 0 at the system boundaries. 
However, the steady state profile ~b(x) (consistent with a non-vanishing, 
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constant  value of  p)  is a combinat ion  of  two ramps as shown from direct 
simulations of  the coarse grained model  in Fig. 1. Below we will use a local 
equilibrium approximant  which describes the ramp profile very well. The 
location x0 of  the interface depends on the initial order  parameter  content  
in the system. It  is impor tant  to recognize that  for conserved order  
parameter  the profile of  Fig. 1 represents an equilibrium state, while for 
nonconserved order  parameter  the "kink" quite generally moves with 
constant  velocity toward  the ho t  side as order  parameter  is converted in 
such a way as to reduce the total free energy. ~18) 

For  the present (conserved) case, by assuming that  the interface at 
x = 0 is at local equilibrium corresponding to the temperature r (x  = 0), one 
can ob ta in / t  to first order  in the gradient fl as follows. First, to simplify the 
algebra we rewrite r ( x ) = m ( x )  2 with m(x)=m0(1-bx) .  To (9(fl) there is 
no  change if we identify b = fl/2 and m0 = 1. For  simplicity we set ( =  1 and 
have p = - d Z ~ / d x Z - m 2 ( x )  ~_]_~3. Following ref. 18 we remove the local 
equilibrium order  parameter  and make  a nonlinear t ransformat ion defining 
~b(x) = m(x) q(z(x)). We set the function z(x) by requiring that  the resulting 
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Fig. 1. The order parameter profile resulting from direct numerical simulation in two dimen- 
sions is shown for fl = 0.004, r0 = 1 and ( = 1 in units of thermal correlation length. One can 
think of the profile as a combination of two ramps having slopes proportional to ft. A system 
of length 100 is used. The inset shows the chemical potential evaluated from Eq. (6) at the 
corresponding time during the approach to equilibrium. 
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differential equation for r/(z) has unity for the coefficient of d2r//dz 2. One 
finds, then, that z ( x ) = m o ( x - b x 2 / 2 )  and 

/t d2r/ r/3 dr/ 
m(x) 3 - dz 2 -- r~ + + (3bm~ --dz (8) 

This procedure effectively isolates the explicit dependence on the tem- 
perature gradient b oz ft. Now one can perform an order-by-order analysis, 
writing r/= r/o(Z) + br/l(z) + . . .  and/ t  =/~o + b/zj + . . . .  At (9(b ~ we have 

/'tO = 0 = d2r/~ 
m 3 dz2 r/o + r/3o (9) 

with, as expected, r/o=tanh(z/x/~). The function ~o=m(x)r /o(Z)  
corresponds to the local equilibrium ramp and is an excellent numerical 
approximation. In fact, if plotted on the same scale as the simulation result 
in Fig. 1, there would be virtually no visible difference. 

At (9(b) we have 

3 
/*~_t _ 50r/~ + - -  - -  (10) 
m3o- mo dz 

where the operator 5 ~ = -da/dz  2 - 1 + 3r/o 2 is recognized as the fluctuation 
operator for the ~b 4 theory, and dr/o/dz is the so-called "translation mode" 
(see, e.g., ref. 10). Multiplying through by dr/o/dz, and recalling that 
50 dr/o/dz = O, one finds the chemical potential shift 

flf (11) 

In the last equality we have reintroduced the mesoscopic length ~ and have 
returned to the original definition of the temperature gradient ft. 

The mesoscopic shift in chemical potential, tim = -I-ill, is proportional 
to the mesoscopic length scale f. Also note that ~t/m ~" 0 ( < 0 )  depending on 
whether the r > 0 ( < 0 )  phase is near the hot end. Physically the chemical 
potential shift (from the coexistence value /~ = 0) is proportional to the 
temperature difference across the interfacial region, which is generally 
small. For the profile shown in Fig. 1, the chemical potential ~t evaluated 
from Eq. (6) is negative, as shown in the inset. For the ~4 model, using the 
parameters of Fig. 1, one finds J/~,,[ =0.004/x/~---0.00283 in excellent 
agreement with the direct simulation. At the time shown in Fig. 1, the 
interface hasn't quite equilibrated in this diffusive system. Small order 
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parameter changes in the evolution are emphasized in the chemical poten- 
tial. For complete equilibration, global diffusion is required. Simulations on 
smaller systems and in one-dimension reveal, more rapidly, a constant 
chemical potential. Recall that the homogeneous case having r = r 0 = const 
has/1 = 0. 

The above analysis arriving at the leading behavior of a flat interface, 
i.e., ~b = x / ~  tanh(z(x)) can be viewed as taking the sharp interface limit 
in which the fast variations of the order parameter along the normal at the 
interface are considered. Note that the slow variation associated with the 
temperature field is effectively ignored while integrating though the inter- 
face. Furthermore, if the normal to the interface is tilted by an angle 0 with 
respect to these x-axis (the direction of temperature variation) one repeats 
the above analysis using O=m(x' cos 0)tanh(z(x')) where x' is the coor- 
dinate in the normal direction. Everything goes through as above with the 
mesoscopic correction becoming/zl cos(0) where/~1 is given in Eq. (11). 
Below the calculation will be slightly modified to deal with a gently curving 
interface. 

Numerical simulations, such as shown in Fig. 1, confirm that the 
models exhibit this shift, supporting the local equilibrium picture of the 
interface in an inhomogeneous, slowly varying temperature field. As noted, 
a single two-phase interface, owing to the conservation of order parameter, 
can achieve an equilibrium state in a large, finite system. A slab consisting 
of a combination of two opposite interfaces, i.e., a kink-antikink, cannot. 
In fact the mesoscopic shift in chemical potential alone drives the slab to 
the hotter side. This phenomenon will be addressed elsewhere. (~8) 

4. INTERFACE E Q U A T I O N S  

We now consider a gently curved interface in the coarse-grained 
modeling and derive equations for the evolution of the interface. We 
restrict ourselves to two dimensions for simplicity since appropriate 
generalizations for higher dimensions can be made straightforwardly. 

To determine the effect of an applied gradient, we first assume that 
locally the interface is flat and is in local equilibrium with x variation 
replaced by variation along the normal direction. The second assumption 
is that the interfacial motion arises from local quasistationary evolution of 
the order parameter ~b(F, t) = ~(F-  I2t). In particular, the evolution of the 
interface at any point s is characterized by the normal velocity IT(s). t~, 
where ~ is a unit normal (pointing from the "minus" phase to the "plus" 
phase). This means that order parameter or fluid flow along the tangential 
direction at any point on the interface do not contribute to the evolution 
of the interface. The equations for diffusive and fluid cases differ since the 
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mechanisms for the interfacial motion are different. Interface equations in 
the absence of imposed gradients have been well studied in literature; ~14) 
our interest here is to extend the derivations and applicability of such equa- 
tions to inhomogeneous perturbations which can, for example, drive steady 
state behavior. 

A. Diffusive Case 

Equation (3) describing the diffusive dynamics can be inverted (see, 
e.g., ref. 14) using the assumption of local quasistationarity: 

f ddr'G(F - F') ~ - - p ( f ,  t) + 2(t) (12) 

where G is the Green's function for the Laplacian satisfying 
-V2G(F-F')=c~(F-F'). The function 2 preserves the order parameter 
conservation and satisfies v z ) .  = 0 with zero-gradient boundary condition 
as does/2. One may view 2 as the change in chemical potential due to the 
presence of complicated interfaces in the system. The idea is to derive an 
equation for the interfacia! motion starting from Eq. (12) by integrating the 
fast variation of ~b along the normal at the interface. A separation of length 
scales allows one to take sharp interface limit in which the radius of 
curvature is much greater than the interface thickness; an alternative 
procedure for organizing corrections has been used to derive interfacial 
dynamics in a driven diffusive system, t2~ These methods allow, however, a 
significant variation of temperature over the scale of a droplet. 

First, the local quasistationarity assumption allows us to replace Ock/Ot 
by - V. V~b. Since the normal variation of ~b at the interface dominates, we 
approximate it further by - V ,  a(b/On at the interface with Vn being the 
velocity along the normal. Second, we multiply Eq. (12) on both sides by 
OCb/On and then take the sharp interface limit. At any point s on the inter- 
face, by ignoring the slow tangential variation of ~b along the interface, we 
can write 

(13) 

where K is the curvature. On integration through the interface, the first 
term in the above is exactly the equation we have for the flat interface. 
Hence in the sharp interface limit the first term yields the mesoscopic 
correction, /~m(h-~), as discussed above, while the second term gives 
the surface tension multiplied by the local curvature, x(s). With these 
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approximations, the following integral equation results for the normal 
velocity at the interface 

fids'G(sls ) A(s) 3(s') Vn(s') = a(s) x(s) --llm(~. s A(s) -- 2(t) z/(s) (14) 

where G(sls')= G(r-'(s)- r'(s')), tr(s) is the surface tension and s and s' are 
points parameterized by the arc length along the interface, L In the above 
equation tangential variations in the miscibility gap A(s) give rise to terms 
in the interface velocity which are higher order in the temperature gradient 
ft. The same result could be obtained without pausing to find explicitly the 
mesoscopic correction to the chemical potential. Since Eq. (12) will be 
projected onto the interface by action of Ock/On.,~ one may use Eq. (13) with 
the "inner approximation" ~b ~-~iqtanh(n/x/2~i), where the subscript I 
indicates the interface location. (Of course, the form of the inner 
approximation is justified by the systematic analysis leading to the meso- 
scopic correction.) In this paper we restrict ourselves to leading order in fl; 
hence we set A(s)= zJ and obtain 

O'(S) I~(S) (n.x)[dm'-~-~(t) 
fi  ds'G(sIs')  A 2 A V.(s') - (15) 

Then the time-dependent Lagrange multiplier 2(t) is determined as part of 
the solution guaranteeing conservation of the order parameter as specified, 
in the macroscopic limit, by the vanishing of the surface integral, 

fz V.(s) ds=O (16) 

The above two equations specify the evolution of a complicated interface 
in the 2D diffusive model, including the leading mesoscopic correction. 
They can be used, for example, to study the evolution of droplets as well 
as other structures and interfacial instabilities/2~) Such equations, without 
the mesoscopic term, have been derived at the macroscopic level and used 
in the literature to study a variety of problems such as interfacial growth 
in an anisotropic Hele-Shaw cell. (22) 

The interface equations can be used to study the evolution of 
complicated interfacial shapes in general. Here we use them to study ther- 
mocapillary response of a spherical droplet of radius R in d dimensions to 
a small thermal gradient. The curvature x(S) at any point s in this case is 
simply given by x(s) = ( d -  1)/R, and the integration over s' in Eq. (15) is 
carried over a d-dimensional sphere. Note that in the absence of a gradient 
the droplet remains stationary since, a(s)= tr and/tin = 0. As a result 2 is 
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a constant and takes a value 2 =2o = a(d-1)/(Rd). This is immediately 
recognized as the required shift in the chemical potential of the system off 
bulk phase coexistence to maintain a droplet of radius R. In macroscopic 
treatments which assume local equilibrium, this shift is embodied in the 
Gibbs-Thomson relation. The treatment here amounts to an alternative 
derivation of this relation from a coarse grained starting point. Other 
derivations are contained, for example, in refs. 23, 9. 

In the presence of a thermal gradient, the surface tension a has spatial 
variation which drives the droplet. This is the standard Marangoni effect, 
but in a purely diffusive system. In particular, if we assume a linear varia- 
tion, a(s)..~ a + alflR cos(0), where 0 is the angle of the outward normal to 
the gradient direction, and neglect higher order corrections in fl, there is a 
steady-state solution for the motion of the droplet. The velocity of the 
droplet can be obtained by solving the integral equation (15). In particular, 
V, = V0 cos(0) is a solution with 2 = 20, corresponding to rigid motion of 
the droplet along the direction of the gradient. Following some of the 
manipulations in the Appendices of ref. 14, one expands the Green's func- 
tion for two points on a sphere of radius R in spherical harmonics as 

- 1  
4n [ d -  

where 0, ~b locate 
tion for the drop 

- Vf  G(a, 

a"[ /=o  m= - /  2 l +  1 R 
----Ylm(O,~)Ylm(O',  ~')* (17) 

d and similarly for d'. Inserting this in the integral equa- 
velocity with V n = Vcos(0), which takes the form 

d t) COS(0')  R 2 dO' = 
--alfl(d-- 1) cos(0) /~mCOS(0) 

z/2 A 

one may obtain the velocity, V o. The calculation in two dimensions is 
similar, and one finds 

V~ = C(d) [ - A---~a'fl+~RR] (18) 

with C =  2 in d = 2  and C =  6 in d =  3. Note that typically a~ < 0  since 
surface tension normally decreases with increasing temperature, thus drives 
the droplet to hotter side. It is interesting that the mesoscopie correction 
with p~ defined in Eq. (11 ) is always positive, indicating that it also drives 
the bubble toward the hotter side. Note that the dimensionality dependence 
only appears in the coefficient C(d), and that the mesoscopic correction 
does not modify the scaling with droplet radius. 

As a check one can compare the results of numerical simulation of the 
2D diffusive model with the above analytic expression. The simulations 



Thermocapillary Motion in Binary Systems 1025 

represent a direct forward integration of Eq. (3). (A sample plot is shown 
in Fig. 5a of ref. 6) Good agreement with the R -  ~ dependence as predicted 
in Eq. (18) is found supporting the validity of the interface equation 
approach based on local equilibrium. Including the mesoscopic correction 
for fl=0.002 one finds from Eq. (18) Vo = 1.56 x 10 - 4  for R = 18 while the 
direct simulation yields Vo "~ 1.87 • 10 -4, while for R = 24, Eq. (18) yields 
V0 = 2.8 • 10 3 to be compared with 2.71 • 10 3 from direct simulation. It 
should be noted that the mesoscopic term in Eq. (18) is significant. We 
have also been able to observe the mesoscopic correction effects in the 
numerical simulations for smaller droplets. A plot of the chemical potential 
itself most directly reveals this, as in Fig. 1. 

B. Hydrodynamic Interactions 

The first assumption we make here is that the diffusive time scale of 
the order parameter is so large that it can be neglected compared to the 
viscous time scale set by the fluid. This is equivalent to saying that the 
interface is being primarily advected by the fluid and that diffusive effects 
(necessary for full approach to equilibrium) act as corrections. Next, 
similar to the diffusive case, we appeal to quasistationary motion of the 
interface. Note that, one has to take both normal and tangential velocities 
of the fluid at the interface into account. However, the fluid velocity normal 
to the interface determines the evolution of the interface as in the diffusive 
case. 

The velocity equation can again be inverted, ~L4) consistent with the 
quasistationary assumption, yielding the following equation: 

1 
v j r )  = - J ~/r Y')(lt Vck)a ddr ' (19) 

[. 

q 

where T~/~ is the Oseen tensor, the form of which ensures the divergence 
free nature of the velocity field. This also implies that the normal velocity 
v, on any closed surface satisfies ~s v, ds=O, which, since diffusion is 
neglected as noted above, is consistent with the conservation of the order 
parameter content enclosed within. Note that the pressure term drops out 
in the above equation since it has been chosen to guarantee divergence free 
flow. In Eq. (19), the/t  V~b term is large mainly at the interface. One can 
integrate this term though the interface, similarly to the steps carried out 
for diffusive case, and arrive at the following interface equation: 

v~(s) = ~ f ,F, /~ T~/~(s l s') F~s ' )  ds' (20) 



1026 Bhagavatula et  al.  

where s, s' are any two points on the interface and T(s[s') = T(7~s) -F(s')).  
The force F/~(s) at the interface is obtained by integrating the p V~b through 
the interface. The normal and tangential forces Fn and Ft along the unit 
normals tl and ? at any point s on the interface are given by 

F,,(s) = - x ( s )  a(s) +tim ZJ(n ".~) (21) 

F,(s) = Oa(s) +It,, A(t.  2) (22) 
u s  

where x is the curvature and a is the surface tension. Note that in higher 
dimensions the tangent surface is multidimensional. Since the gradient is 
applied along one specific direction, we can work with a single tangent vec- 
tor by exploiting the azimuthal symmetry. The first terms on the right hand 
side in the above two force equations are macroscopic and are identical to 
the terms phenomenologically included by assuming a sharp interface 
between the two phases in the standard macroscopic hydrodynamic 
analysisJ 4~ The terms involving tim are mesoscopic corrections, which will 
occur for finite size droplets. Hence the coarse-grained models reproduce the 
macroscopic results exactly. The tangential force derives macroscopically 
from the presence of a tangential variation of the surface tension, which itself 
follows in situations such as those with an imposed thermal gradient. 

Now we use the above interface equation (20) to obtain the velocity of 
a spherical droplet of radius R in a small applied thermal gradient ft. Note 
that in the absence of gradient, the droplet remains stationary, and the 
pressure field satisfies Laplace's law in the model consistent with the macro- 
scopic expectations. By assuming an approximate linear variation of the sur- 
face tension with temperature, a point to which we will return below, i.e., 
a(s) = ao +flRal cos(0), we can integrate the interface equation to obtain 
the droplet velocity. In the quasistationary approximation the center of 
mass of the droplet is assumed to move with a constant velocity V along the 
gradient in the lab frame, leading to a normal velocity Vcos(0), where 0 is 
the azimuthal angle. This is due to the fact that, in the center of mass frame, 
the droplet must be stationary, and, hence, the normal velocity must vanish. 
Even though the component of the fluid velocity is zero along the normal, 
the tangential velocity need not be 'zero in CM frame. This turns out to be 
the case for thermocapillary motion of a droplet in the hydrodynamic case. 

The CM velocity of the droplet V can be obtained by solving the 
integral equation in three dimensions using specifically the Oseen tensor 
T~/~(F) = 1/8nr(~/~ + r~rl~/r2). In three dimensions a useful identity 1~41 is 

f ds ~ n~(s T~lJn~(s ') Y,m(~2')- 1 2l(l+ 1) Y/m(s (23) 
~./~ R ( 2 l -  1)(2l+ 1)(2l+ 3) 
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and for l = 1, m = 0 the integral equals 4 cos(O)/15R. Using such results one 
finds for the CM velocity, 

2 (a~flR) + 2 V = - 1 5  q ~-~(p~ AR) (24) 

The first term is identical to the solution obtained via macroscopic analysis 
of the Navier-Stokes equation (4) for the special case of two fluids with 
identical fluid and thermal properties. The second term represents the 
mesoscopic correction for the droplet velocity, where /zl was evaluated 
in Eq. (11). In two dimensions the Oseen tensor is logarithmic, and one 
needs to introduce a screening length a presumably set by the droplet 
size. Explicitly, T~(7) = - 1/4zc[6~ log(r/a) - r~r/~/r2). With the simplest 
assumption a = R, similar manipulations yield the center of mass velocity 
of the droplet as 

(25) 

Interestingly, the macroscopic part, i.e., the first term on the right, does not 
depend on the screening length, a. For general screening length, the 
mesoscopic, second, term is multiplied simply by the factor (1 +ln(R/a)). 
For a suspension of many droplets, it is reasonable to expect that a ~ R but 
for a single droplet, the choice remains problematic. As pointed out 
elsewhere ~8) the R dependence of the macroscopic term is expected to be 
dimensionality independent. In the coarse grained model we are consid- 
ering here, the surface tension decreases with increasing temperature, i.e.,, 
at a~ <0. Hence the droplet is driven along the direction of the gradient 
towards the warmer side. Note that the mesoscopic term also drives the 
droplet to the warmer side with the scaling of velocity with radius of the 
droplet being unchanged; the total proportionality constant is shifted, 
however. 

As a check on our ability to analyze the motion of a droplet in the 
mesoscopic model, we have numerically investigated the average velocity 
of the droplet and the velocity of the fluid at the interface of the droplet 
in the two-dimensional case. The simulation methodology and data arise 
from calculations described in ref. 8, in which Eqs. (1) and (2) were 
forward integrated. The macroscopic term in Eq. (25) yields V-~ 0.012 for 
the ~4 model for droplet size R =24 (and operating conditions r0 =0.5, 
fl=0.001, 1/~/=5.96) which correspond to a simulation in that refer- 
ence. The numerical agreement is excellent; Fig. 3 of ref. 8 shows V -  ~ 
0.0005R-~ 0.012. This agreement does not address the ambiguity of the 
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screening term in the mesoscopic correction in two dimensions. In Fig. 2, 
we show the velocity vx and Vy at the interface of the droplet, as a func- 
tion of the azimuthal angle 0. One can clearly see the variation consistent 
with a nonzero tangential fluid velocity at the interface. One can show 
that the macroscopic part of the tangential velocity is V sin(0) leading to 
vx= Vcos(20) and Vy= -Vsin(20),  confirming nonsolid body motion of 
the droplet in the fluid case. ~24) This behavior agrees with macroscopic 
analysis based completely on the steady solution of the Navier-Stokes 
equation (i.e., by redoing the analysis of refs. 3, 4 for comparison with the 
two-dimensional simulations.) The order of magnitude of V obtained in 
the simulations is in agreement with the analytic estimate in Eq. (25) 
above. Additional quantitative investigations are left for future explora- 
tions. Appropriate checks should involve three-dimensional calculations to 
avoid the ambiguity of the screening length in the mesoscopic correction. 
The presence of the mesoscopic correction can be verified using the 
chemical potential profile which shows linearity inside the droplet along 
the gradient direction (i.e., V2/~ is small consistent with the assumptions), 
corresponding to the mesoscopic shift in the chemical potential at the 
interface. 

The inclusion of a body force such as gravity into the interface equa- 
tions for two fluids having different densities has been discussed earlier in 
ref. 14, but without a thermal gradient. In the presence of a thermal 
gradient, it can be checked that the normal force F, at the interface gets 
appropriately modified (a term g(zip) cos(0) with g the acceleration due to 
gravity and (zip), the density difference enters), leading to an additional 
macroscopic term identical to the result of Young et aL ~4) For example, in 
three dimensions the gravity coupling yields the following CM velocity for 
the droplet: 

2 4 
V= - 15r/(a~flR) +-~q (CR 2) + (/21 dR) (26) 

with C =  g(Ap). Note the different scaling of the macroscopic terms with 
droplet radius, R, indicating the interplay between a bulk body force and 
a force concentrated at the interface. With proper orientation and strength 
of the gradient relative to the gravitational force, the macroscopic terms 
can be tuned to cancel, leaving a small systematic drift toward the hot side 
due to the mesoscopic correction. Phase asymmetry (i.e., owing to a free 
energy without r ~ - r  symmetry) also couples to a temperature gradient 
in a way similar to gravity modifying only the normal force on the 
interface. (6) 
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Fig. 2. Simulation of droplet motion with hydrodynamic coupling. (a) The X- component of 
the velocity at the droplet interface (i.e., component along the direction of the gradient) is 
shown as a function of the azimuthal angle (0). The solid line indicates, for comparison, 
cos(20) behavior. (b) The Y-component is shown. For comparison the solid line shows 
-s in(20)  behavior. These indicate non-rigid motion for the droplet. The parameters used are 
fl = 0.001, R = 24, T O = 0.5. A 200 x 200 system was simulated in units of f. 
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5. CONCLUDING REMARKS 

In this work we have investigated macroscopic equations for interfa- 
cial dynamics arising from two coarse-grained dynamical models. These 
equations agree with those derived from purely macroscopic considera- 
tions, which provides additional evidence for the utility of these coarse- 
grained models even away from the critical regime; furthermore the details 
of the analysis indicate clearly the assumptions required and potential 
sources of corrections. 

More specifically, we derived interface equations starting from coarse- 
grained descriptions of binary systems whose dynamics are dominated by 
diffusion (Model-B) and by hydrodynamic interactions (Model-H) using a 
local equilibrium description. We allow for spatially varying potentials 
such as an imposed thermal gradient, as long as the spatial variation is 
slow on the scale of the interfacial width; such variation may nonetheless 
be macroscopically large so as to be significant over the scale of the rele- 
vant structures. The equations are shown to describe thermocapillary 
driven motion of a droplet quite well, yielding complete agreement with 
macroscopically derived results in the appropriate limit in which structures 
are large with respect to the interfacial width and the gradient is sufficiently 
weak to neglect all but the linear temperature coefficient of the surface 
tension. 

Clearly the interface equations derived are more general. The coarse- 
grained models naturally include nonlinear dependence of the surface ten- 
sion on the temperature. We also show how mesoscopic effects associated 
with the finite thickness of the interface do not shrink as the radius 
increases. The mesoscopic effects alone can play a vital role in driving 
thermocapillary migration in situations in which the curvature effects 
are less important (e.g., motion of a slab, or kink-antikink pair in a two 
phase system). We have added additional circumstantial evidence for 
the applicability of coarse-grained free energetics and coarse-grained 
hydrodynamics even away from criticality, for which the modeling was 
originally designed. The local equilibrium or "local steady state ''~2~ 
analysis and the interface equation approach are sufficiently general to 
allow application to a variety of other driven systems. 
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